An exactly solvable model for emergence and scaling laws in the multitask sparse parity problem

Question: Can we find an analytically solvable model that exhibits both: 1) Emergence and 2) Scaling Laws?

Setup

Represent 'skills' as orthogonal functions, where $g_k(i,x)$ are the skill basis functions. Apply to the **multitask sparse parity problem** [3], where task frequencies follow a power-law.

	Skill idx (I)	Control bits	Skill bits (X)	y	M(i,x)	$g_1(i,x)$	$g_2(i,x)$	•••	$g_{n_s}(i,x)$	
-	1	1000000	110110000100	S	[1,1,0]	1	0	•••	0	
	1	1000000	100101010001	-S	[0,1,0]	-1	0	•••	0	
	:		÷	:	•	•	:	•	:	
	2	0100000	001001011011	-S	[0,0,1]	0	-1	•••	0	
	:	÷	÷	:	•	•	:	•	÷	
	n_s	0000001	001010100110	-S	[1,1,1]	0	0	•••		
$\mathcal{P}_{s} \bigwedge_{i} \mathcal{P}_{s}(I=i) := \frac{i^{-(\alpha+1)}}{\sum_{j}^{n_{s}} j^{-(\alpha+1)}} g_{k}(i,x) := \begin{cases} (-1)^{\sum_{j} M_{j}(i,x)} & \text{if } i = k \\ 0 & \text{otherwise} \end{cases}$ $\boxed{\text{Each skill (task) is an orthogonal basis function}}$										
Target function. $f^*(i, x) := S \sum_{k=1}^{n_s} g_k(i, x)$										
MSE loss. $\mathcal{L}_k := \frac{1}{2} \mathbf{E}_X \left[\left(f^* (I = k, X) - f(I = k, X) \right)^2 \right] \qquad \mathcal{L} = \sum_{k=1}^{n_s} \mathcal{P}_s (I = k) \mathcal{L}_k $										
Skill strength. The k^{th} coefficient if a model is expanded in the basis of the skill functions.										
$\mathcal{R}_k(T) := \mathbf{E}_X\left[g_k(I=k,X)f_T(I=k,X)\right] \text{Measures how well the } k^{\text{th}} \text{ skill is learned by} \\ \text{the model at time } T$										
Multilinear Model										
$ \begin{array}{c} g_{1}(i,x) \xrightarrow{a_{1}} \bigcirc \overset{b_{1}}{\longrightarrow} & \\ \vdots \\ g_{N}(i,x) \xrightarrow{a_{N}} \bigcirc \overset{b_{N}}{\longrightarrow} & \\ \end{array} \xrightarrow{f(i,x;a,b)} & f_{T}(i,x;a,b) = \sum_{k=1}^{N} a_{k}(T)b_{k}(T)g_{k}(i,x) & \\ \end{array} \begin{array}{c} \text{Skill functions as} \\ \text{basis functions} \\ \end{array} \end{array} $										
$a_k(T)b_k(T) = \mathcal{R}_k(T)$ Model Dynamics										
	$- d_1/D = 0.5 - d_2/D = 0.2 - d_3/D = 0.1$									
Anal	ytically solvab	le under gradi	ent flow	1.0-				Ι	Linear model	

a Rudolf Peierls Centre for Theoretical Physics, University of Oxford

b Center for Quantum Structures in Modules and Spaces, Seoul National University

c Physical and Theoretical Chemistry Laboratory, University of Oxford

Yoonsoo Nam^{*,a}, Nayara Fonseca^{*,a}, Seok Hyeong Lee^b, Chris Mingard^{a,c}, and Ard A. Louis^a

ansformer

Time emergence in a transformer on the multitask sparse parity task with $\alpha = 0.9$.

ne block decoder transformer (embedding layer with output dimension 512) and four attention heads.

Stage-like training

Fixed basis functions Decoupled dynamics

Power-law in skill frequency + sigmoidal dynamics = stage-like training = effective decoupling of skills

networks, ICLR 2014.

(*) Equal contribution; yoonsoo.nam@physics.ox.ac.uk, nayara.fonsecadesa@physics.ox.ac.uk

Scaling Laws

Using the decoupled dynamics, we can **analytically** derive the time, data, parameter, and compute scaling laws for the MSE total loss (including prefactors).

model with fixed skill functions and decoupled dynamics?

MLP

Feature learning

No decoupling

Layerwise structure

References

[1] Kaplan, McCandlish, et al., Scaling laws for neural language models. arXiv:2001.08361, 2020. [2] Wei et al., Emergent abilities of large language models. TMLR 2022.

[3] Michaud et al., The Quantization Model of Neural Scaling, NeurIPS 2023.

[4] Saxe et al., Exact solutions to the nonlinear dynamics of learning in deep linear neural